REFERÊNCIAS

[1] **Propagation data and prediction method required for the design of Earthspace telecommunication systems**. Recommendation ITU-R P.618-7. Disponível em <u>http://www.itu.int/ITU-R/publications/rec/index.asp</u>

[2] **Propagation data and prediction method required for the design of Earthspace telecommunication systems**. Recommendation ITU-R P.618-4. 1992 RPN Series Rec. Propagation in non-ionized media. Geneve, October 1992

[3] CRANE. R.K. **Prediction of attenuation by rain**. IEEE Transactions on Communications. vol Com 28, no 9 September 1980. pp 1717-1733

[4] PRITCHARD,W.L.; SUYDERHOUD,H.G.; NELSON,R.A. Introduction to Satellite Communications. In: Satellite Communication Systems Engineering.
2.ed. Prentice Hall, 1993. p.1-28.

[5] Non-GSO MSS/FSS Constellations and the International Regulations,
 Yvon Henri, Space Services Departament, ITU Radiocommunication Bureau.
 Disponível em <u>http://www.itu.int/ITU-R/conferences/seminars/mexico-</u>2001/docs/08-non-gso.doc

[5A] PATTAN B., Satellite-based cellular communications. McGraw Hill Telecommunications, 1998.

[6] Little Leo Systems: Will they win the satellite space race?. Disponível em http://www.itu.int/newsarchive/wtpf96/fea2.html

[7] **Big Leo Systems: The MSS Heavyweights**. Disponível em <u>http://www.itu.int/newsarchive/wtpf96/fea3.html</u>

[7A] Disponível em

http://www.globalstar.com.br/arquivos_comuns/jsp/ultimas_noticias/ConsultLast News.jsp?id=49 [7B] Disponível em www.iridium.com/iri-dod.asp

[8] The New Mobile Satellite Systems: What can they really deliver? Disponível em http://www.itu.int/newsarchive/wtpf96/fea1.html

[9] Disponível em

http://www.ee.surrey.ac.uk/Personal/L.Wood/constellations/tables/overview.html #globalstar

[10] Disponível em http://www.qualcomm.com/globalstar/about/satellites.html

[11] Policy Challenges and opportunities for Global Mobile Personal Communications by Satellite: The Globalstar Viewpoint, Douglas G. Dwyer, President Globalstar. Disponível em

http://www.itu.int/newsarchive/wtpf96/paper3.html

[12] Disponível em http://www.itu.int/ITU-R/publications/rr/index.asp

[13] MARAL,G; BOUSQUET,M. Earth Stations. In: <u>Satellite Communications</u> Systems – Systems, Techniques and Technology.3.ed. Wiley, 1998. p. 339-415.

[14] ALLNUT, J.E. Satellite-to-ground radiowave propagation. IEE Series 29,Peter Peregrinus Ltd, 1989. London, UK

[15] OLSEN,R.; ROGERS, D.; HOUGE, D. The aR^b relation in the calculation of rain attenuation. IEEE Trans. Ant. Prop., AP-26, No 2, pp 318-329, Março 1978

[16] Recomendação ITU-R P.838-1. Specific Attenuation Model for Rain for use in Prediction Methods. Disponível em <u>http://www.itu.int/ITU-</u> <u>R/publications/rec/index.asp</u>

[17] **Draft modification to Recommendation ITU-R P.838-1**. Disponível em <u>http://www.itu.int/ITU-R/publications/rec/index.asp</u>

[18] Modelo de previsão de atenuação por chuvas do CETUC. Relatório interno

[19] Banco de Dados DBSG5. Disponível em <u>http://www.itu.int/ITU-</u> R/software/study-groups/rsg3/databanks/dbsg5/index.html

[20] Recommendation ITU-R P311-11 - Acquisition, presentation and analysis of data in studies of tropospheric propagation. Disponível em: <u>http://www.itu.int/ITU-R/publications/rec/index.asp</u>

[21] Software Statistica, Statsoft ®

[22] **Nonlinear Estimation**, Eletronics Statistic Textbox, Statsoft ®, disponível em <u>http://www.statsoft.com/textbook/stathome.html</u>

[23]. DRAPER N.R; SMITH H. Applied Regression Analysis. Wiley Series in Probability and Mathematical Statistics, New York, 1966

[24] Software Matlab, The Mathworks Inc.

[25] PRITCHARD,W.L.; SUYDERHOUD, H.G.;. NELSON, R.A. Geometry of the Nongeostationary Orbit. In: <u>Satellite</u> Communications Systems Engineering. 2.ed. Prentice Hall, 1993. p.104-122.

[26] **Spacewarn Bulletin**. Disponível em: <<u>http://nssdc.gsfc.nasa.gov/spacewarn/</u>>

[27] Disponível em <<u>http://www.qualcomm.com/globalstar/about/satellites.html</u>>

[28] **Orbital Propagation: Part II.** Disponível em: <<u>http://www.celestrak.com/columns/v01n04/></u>

[29] PRITCHARD,W.L.; SUYDERHOUD, H.G.;. NELSON, R.A. Orbital Perturbations. In: <u>Satellite Communications Systems Engineering</u>. 2.ed. Prentice Hall, 1993. p.62-86

[30] PRITCHARD,W.L.; SUYDERHOUD, H.G.;. NELSON, R.A. The Oblate Earth. In: Satellite Communications Systems Engineering. 2.ed. Prentice Hall, 1993. p.69-73

[31] Disponível em: <<u>http://www.celestrak.com</u>>

[32] K.E.CROWE; R.A.RAINES. A Model to Describe the Distribution of Transmission Path Elevation Angles to the Iridium and Globalstar Satellite Systems. IEEE Communications Letters, Vol 3, No 8, Agosto 1999, pp 242 a 244.

[33] The Weibull Distribution. Disponível em <<u>http://www.weibull.com</u>>

[34] LAW, A.M.; KELTON, W.D. Simulation Modeling and Analysis. 2.ed. New York: Mc Graw-Hill, 1991.

[35] PONTES, M.S; SOUZA, R.S.L. Characteristics of the 0°C isotherm and rain height. Publicação CETUC-DP-01/91, Abril 1991

APÊNDICE I – Dinâmica Orbital

I.1 Descrição do movimento do satélite

As leis fundamentais de física que regem a teoria da mecânica orbital são a segunda lei de movimento de Newton e a lei de gravitação universal de Newton. O movimento dos satélites é descrito convenientemente por coordenadas polares ao invés de coordenadas retangulares. As equações de movimento para coordenadas polares (r, θ) serão descritas a seguir, tendo como referência a Figura 1.

Figura 1

$$x(t) = r(t)\cos\theta$$

$$y(t) = r(t)sen\theta$$
(1)

A segunda lei de movimento estabelece que a aceleração do corpo é proporcional à força que age nele e é inversamente proporcional à sua massa.

$$\overline{F} = m\overline{a} \tag{2}$$

A força **f** agindo no satélite é medida pela aceleração do satélite (força por unidade de massa), logo as equações de movimento nas coordenadas retangulares originais aparecem como:

$$f_x = \ddot{x}(t)$$

$$f_y = \ddot{y}(t)$$
(3)

Fazendo-se a segunda derivada no tempo, obtêm-se as equações:

$$\ddot{x}(t) = \ddot{r}\cos\theta - 2\dot{r}\dot{\theta}sen\theta - r\dot{\theta}^{2}\cos\theta - r\ddot{\theta}sen\theta$$

$$\ddot{y}(t) = \ddot{r}sen\theta + 2\dot{r}\dot{\theta}\cos\theta - r\dot{\theta}^{2}sen\theta + r\ddot{\theta}\cos\theta$$
(4)

Escrevendo f em componentes radial e tangencial (fr,f θ), elas se relacionam com as componentes x e y da seguinte forma:

$$f_r = f_x \cos\theta + f_y \sin\theta$$

$$f_\theta = -f_x \sin\theta + f_y \cos\theta$$
(5)

Substituindo as equações (3B) em (2B) e depois em (4B), obtem-se

$$\begin{aligned} \ddot{r} - r\dot{\theta}^2 &= f_r \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} &= f_\theta \end{aligned} \tag{6}$$

que são as equações de movimento em coordenadas polares.

A lei de gravitação universal estabelece que a força de atração entre dois corpos varia com o produto das massas e inversamente com o quadrado da distância e é direcionado ao longo da linha que une os dois centros, logo

$$\overline{F} = -\frac{GMm}{r^2}\frac{\overline{r}}{r} \tag{7}$$

onde G é a constante universal de gravitação, M a massa da Terra e m a massa do satélite.

As equações (2) e (7) podem ser escritas para n corpos e podem incluir os efeitos dos distúrbios não gravitacionais, tais como o arraste atmosférico e perturbações gravitacionais devido à não esfericidade da Terra. Obter a solução para estes sistemas é extremamente complexo e utiliza-se normalmente soluções numéricas. Entretanto para satélites artificiais os resultados importantes são obtidos através do problema de dois corpos. Nele considera-se dois corpos em um sistema de coordenadas e assume-se que um atrai o outro conforme as equações (2) e (7).

No caso dos satélites artificiais , $m \ll M$ e GM = μ e μ = 398600.5 km³/s². Tem-se que

$$F_{r} = -\frac{GMm}{r^{2}} = -\frac{\mu m}{r^{2}} \Longrightarrow f_{r} = \frac{F_{r}}{m}$$

$$F_{\theta} = 0 \Longrightarrow f_{\theta} = \frac{F_{\theta}}{m}$$
(8)

pois a força gravitacional é sempre dirigida para o centro do corpo, não havendo componente em θ . As equações de movimento do satélite (6) podem ser reescritas como

$$\ddot{r} - r\dot{\theta}^2 = -\frac{\mu}{r^2}$$

$$2\dot{r}\dot{\theta} + r\ddot{\theta} = 0$$
(9)

Multiplica-se a segunda equação por r para se obter nova relação, onde p é constante.

$$2r\dot{r}\dot{\theta} + r^{2}\ddot{\theta} = 0 \Longrightarrow \frac{d}{dt}(r^{2}\dot{\theta}) = 0 \Longrightarrow r^{2}\dot{\theta} = p$$
(10)

Na figura 2 está ilustrado o deslocamento do satélite entre os instantes de tempo t e (t+ Δ t):

Figura 2

Tem-se que:

$$r(r\frac{d\theta}{dt}) = p \tag{11}$$

A área do triângulo hachurado é dada por **r.rd\theta/2**, logo da relação (11) verifica-se que a taxa de variação da área percorrida por duas posições orbitais é constante, pois

$$\frac{1}{2}r(r\frac{d\theta}{dt}) = \frac{p}{2} \Longrightarrow \frac{dA}{dt} = \frac{p}{2}$$
(12)

Desta forma verifica-se a segunda lei de Kepler, que estabelece que a linha que une a Terra ao satélite varre áreas iguais em tempos iguais.

A primeira equação de (9) dará a forma da órbita, bastando substituir a equação (11) em $d\theta/dt$:

$$\ddot{r} - r\dot{\theta}^2 = -\frac{\mu}{r^2} \Longrightarrow \ddot{r} - \left(\frac{p^2}{r^3}\right) = -\frac{\mu}{r^2}$$
(13)

Fazendo-se r = 1/s,

$$\frac{dr}{dt} = -\frac{1}{s^2}\frac{ds}{dt} = -\frac{1}{s^2}\frac{ds}{d\theta}\frac{d\theta}{dt} = -\left(r^2\frac{d\theta}{dt}\right)\frac{ds}{d\theta} = -p\frac{ds}{d\theta}$$
(14)

$$\frac{d^2r}{dt^2} = \frac{d}{d\theta} \left(\frac{dr}{dt}\right) \frac{d\theta}{dt} = \frac{d}{d\theta} \left(-p\frac{ds}{d\theta}\right) \frac{d\theta}{dt} = -p\frac{d^2s}{d\theta^2} \left(\frac{p}{r^2}\right) = -p^2s^2\frac{d^2s}{d\theta^2}$$
(15)

Substituindo na equação diferencial (12B), obtem-se

$$\frac{d^2s}{d\theta^2} + s = \frac{\mu}{p^2} \tag{16}$$

A solução geral para esta equação é dada por

$$s = \frac{\mu}{p^2} + q\cos(\theta + \theta o) \tag{17}$$

A equação (17) dá a forma da órbita. Como r = 1/s, obtem-se

$$r = \frac{\begin{pmatrix} p^2 / \mu \end{pmatrix}}{1 + \left(\frac{p^2}{\mu}q\right)\cos(\theta + \theta o)}$$
(18)

Deseja-se mostrar que a equação (18) é a equação de uma elipse. A elipse tem a propriedade de que a soma das distâncias r' e r a partir de cada um dos focos a qualquer ponto da curva é constante, tal como ilustrado na figura 3.

$$r'+r = 2a \tag{19}$$

Onde *a* é o semi-eixo principal e *e* a excentricidade da elipse. Substituindo r' = 2a - r de (19) na relação do triângulo

$$r'^{2} = r^{2} + (2ae)^{2} - 2(2ae)r\cos(180 - \theta)$$
⁽²⁰⁾

obtém-se

$$r = \frac{a(1-e^2)}{1+e\cos\theta} \tag{21}$$

que é a equação polar para a elipse, onde $0 \le e < 1$. A equação da órbita (18) pode ser encaixada em (21) determinando-se os seguintes parâmetros:

$$\begin{cases} \frac{p^2}{\mu}q = e\\ a(1-e^2) = \frac{p^2}{\mu} \end{cases}$$
(22)

Então, como $0 \le e < 1$ tem-se que $0 \le q < \mu/p^2$. O raio r tem seus valores mínimos e máximo com $r_{min} = a(1-e)$ e $r_{max} = a (1+e)$ em $\theta = 0^{\circ}$ (perigeu) e $\theta = \pi$ (apogeu) respectivamente. Os parâmetros *a* e *e* definem o tamanho e a forma da órbita. O parâmetro θ o é chamado argumento do perigeu, e define a orientação deste, normalmente medido a partir do *nó ascendente*, que é o ponto sobre o qual o satélite cruza o plano equatorial no sentido sul para norte.

Verifica-se então que o satélite descreve órbita elíptica de semi-eixo *a* e excentricidade *e*, confirmando a primeira lei de Kepler, que estabelece que a órbita de um satélite ou planeta é uma elipse com o corpo central em um dos focos.

Sendo *b* o eixo menor da elipse e $b = a\sqrt{1-e^2}$, tem-se para a área $A = \pi ab = \pi a^2 \sqrt{1-e^2}$. Como $p = \sqrt{\mu a(1-e^2)}$ conforme a segunda equação (26), deseja-se obter uma relação para o período *T* onde o satélite percorre a área da elipse *A*. A taxa de varredura de área dA/dt é reescrita como:

$$\frac{dA}{dt} = \frac{p}{2} = \frac{1}{2}\sqrt{\mu a(1-e^2)}$$
(23)

Para obter a área percorrida em um intervalo de tempo Δt , faz-se uma regra de três com o período T. No intervalo Δt , $\Delta A = (p/2) \Delta t$, então

$$\frac{T}{\Delta t} = \frac{A}{\Delta A} = \frac{A}{\frac{p}{2}\Delta t} = \frac{\pi a^2 \sqrt{1 - e^2}}{\frac{1}{2}\sqrt{\mu a(1 - e^2)}}$$

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$
(24)

Este é o período que o satélite leva para percorrer uma órbita, confirmando a terceira lei de Kepler, que estabelece que o quadrado do período de revolução é proporcional ao cubo do maior eixo da elipse.

I.2 Determinação da posição do satélite

Uma vez que foi definida a forma da órbita, o próximo passo é determinar a posição do satélite em função do tempo. O argumento t desapareceu de (16) na resolução da equação. Deseja-se determinar a relação posição-tempo do satélite. O ângulo θ indica o movimento de revolução do satélite, chamado de *anomalia verdadeira*, que é o ângulo que o satélite faz com o perigeu em relação à Terra, e a *anomalia excêntrica* E (apresentados na Figura 4), são parâmetros que serão utilizados na determinação daquela relação.

Figura 4

Da figura 4 tem-se a relação

$$a\cos E = ae + r\cos\theta$$

e da equação da elipse (21) tem-se que

$$r + re\cos\theta = a(1 - e^2)$$

Multiplicando a primeira equação por \underline{e} e fazendo-se a substituição da segunda na primeira, tem-se

$$r = a(1 - e\cos E)$$

Da figura 4,

$$OB = a\cos E = ae + r\cos\theta$$

Aplicando (21) na equação anterior,

 $\cos E = \frac{e + \cos \theta}{1 + e \cos \theta}$

De onde se obtém após manipulação,

$$tg\frac{E}{2} = \sqrt{\frac{1-e}{1+e}}tg\frac{\theta}{2}$$
(22)

Esta equação é conhecida como equação de Gauss, e determina a anomalia verdadeira para um dado valor de anomalia excêntrica.

Deseja-se obter a área hachurada da Figura 5, obtida da figura 4:

Figura 5

Tem-se que conforme a regra de três onde a área A da elipse percorrida no período total T é igual a π ab, a área percorrida em um intervalo t será

$$A(\theta) = \pi a b \frac{t}{T} \tag{23}$$

Por outro lado,

$$A(\theta) = (BSF) + (ASB)$$

Comparando as equações do círculo

$$\frac{(OB)^2}{a^2} + \frac{(QB)^2}{a^2} = 1 \Longrightarrow (QB)^2 = a^2 \left[1 - \frac{(OB)^2}{a^2} \right]$$

com a elipse

$$\frac{(OB)^2}{a^2} + \frac{(SB)^2}{b^2} = 1 \Longrightarrow (SB)^2 = b^2 \left[1 - \frac{(OB)^2}{a^2} \right]$$

tem-se

$$(SB) = \frac{b}{a}(QB)$$

A relação entre os dois trechos é constante. Fazendo a relação entre as áreas,

$$(ASB) = \frac{b}{a}(AQB)$$
$$(ASB) = (\frac{b}{a})\frac{1}{4}a^{2}(2E - sen 2E)$$

A área AQB é encontrada na literatura. Então,

$$A(\theta) = (BSF) + (ASB) = \frac{1}{2}(a\cos E - ae)(\frac{b}{a}asenE) + \frac{b}{a}\frac{1}{4}a^2(2E - sen2E)$$

onde

$$a\cos E - ae = FB$$
$$\frac{b}{a}asenE = SB$$

Logo

$$A(\theta) = \frac{1}{2}ab(E - esenE)$$
(24)

Igualando as duas expressões (25B) e (26B) de $A(\theta)$,

$$E - esenE = \frac{2\pi t}{T}$$

Esta é a equação de Kepler, onde o segundo termo é conhecido como anomalia média M(t), que é definida em qualquer t como sendo

$$M(t) = n(t - t_{e}) + Mo \tag{25}$$

onde n= $2\pi/T$ é o movimento médio, τ é o tempo no perigeu, t_e é o tempo de referência e Mo é a anomalia média em t_e. Então, dados quatro parâmetros que caracterizam a forma da órbita e a posição inicial,

$$a, e, t_e, Mo$$

é possível determinar a posição do satélite na órbita em qualquer t empregando-se as equações seguintes, que geram como resultado θ , **agora chamado de v**, e *r*.

$$M = n(t - t_e) + Mo$$

$$E - e.sen(E) = M$$

$$v = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{E}{2}\right)$$

$$r = \frac{a(1 - e^2)}{1 + e \cos v}$$

(26)

Na primeira equação determina-se M(t) a partir de t, da segunda equação obtém-se E, da terceira obtém-se v e da quarta obtém-se r.

I.3 Solução para a anomalia verdadeira v (t)

Considerando um vetor t de um período de 24 horas, estes cálculos são efetuados para cada instante de tempo, a fim de se obter v(t). A solução para a anomalia verdadeira deve seguir os seguintes passos:

1) Obtenção da anomalia média M(t) a partir do vetor t, empregando os valores de referência t_e e Mo de uma determinada data do calendário;

 2) Obtenção da anomalia excêntrica E(t) a partir de M(t), através da solução de

$$M(t) = E(t) - esenE(t)$$
⁽²⁷⁾

A solução da equação transcendental para M(t) pode ser obtida por análise numérica. Para o caso de órbitas com pequena excentricidade, da ordem de e< 0.1, pode ser utilizada a solução obtida por Lagrange na forma da série trigonométrica [36]

$$E = M + 2\sum_{k=1}^{\infty} \frac{1}{k} J_k(ke) sen(kM)$$
⁽²⁸⁾

onde J_k é função de Bessel do 1º tipo, ordem k. A expansão até a 3ª ordem de e é dada por

$$E = M + esenM + \frac{e^2}{2}sen2M + \frac{e^3}{8}(3sen3M - senM) + \dots$$
(29)

1- Obtenção de v(t) a partir de E(t), conforme equação de Gauss (22)

$$v(t) = 2\arctan\left(\sqrt{\frac{1+e}{1-e}}\tan\frac{E(t)}{2}\right)$$
(30)

Uma vez construído o vetor E(t), basta aplicar na Equação de Gauss para obter-se v(t).

[36] PRITCHARD. W.; The calculation of orbital positioning using Standard orbital parameters. Technical Note. Int. J. Satell. Commun. 17. pp 303-304, ano 1999

APÊNDICE II

Arquivo *glob2.wri* contendo os elementos orbitais de todos os satélites da constelação Globalstar para o segundo dia. Os parâmetros de interesse estão resumidos na tabela abaixo, com a descrição a seguir.

Linha 1			YDDD.FR					
Linha 2	Sat #n	i	Ω	e'	ω	Мо	n	

Onde

YDDD.FR: Y, último dígito do ano; DDD, dia do ano; FR, fração do dia, instante de referência t_e dentro do intervalo de um dia.

Sat #n: número do satélite

i: inclinação da órbita

Ω ascensão direta do nó ascendente (RAAN), ângulo que o ponto que o satélite cruza o Equador no caminho ascendente faz com a referência (direção do Equinócio Vernal)

e': excentricidade da órbita x 10^7 . Para obter *e* multiplica-se este valor por 10^{-7} .

ω: argumento do perigeu, ângulo que o satélite faz com o perigeu da órbita

Mo: anomalia média em t_e ou ângulo dentro da órbita no instante de referência t_e

n: número de revoluções do satélite por dia, utilizado no cálculo da anomalia média M

1	NaN	NaN	3002.8969	-1.04E-06	NaN	NaN	0		7072
2	25162	52.0026	222.3691	1869	122.5133	237.5916	12.622622	NaN	
1	NaN	NaN	3002.9628	-1.04E-06	NaN	NaN	0		6925
2	25163	51.9982	221.7609	2089	79.1256	280.9843	12.622602	NaN	
1	NaN	NaN	3002.9319	-8.40E-07	NaN	NaN	0		6809
2	25164	52.0059	277.5997	7394	62.0965	298.0638	12.381055	NaN	
1	NaN	NaN	3002.9496	-1.04E-06	NaN	NaN	0		6847
2	25165	51.9942	221.077	2659	58.3698	301.7429	12.622612	NaN	
1	NaN	NaN	3002.3931	-9.70E-07	NaN	NaN	0		4719
2	25306	51.9957	329.6056	12106	181.9566	178.1243	12.384282	NaN	
1	NaN	NaN	3002.8954	-1.04E-06	NaN	NaN	0		4920
2	25307	51.9994	266.9262	1635	30.2766	329.8192	12.622688	NaN	
1	NaN	NaN	3002.869	-8.60E-07	NaN	NaN	0		5072
2	25308	51.9972	266.6611	1324	47.3803	312.7172	12.622706	NaN	
1	NaN	NaN	3002.8556	-1.04E-06	NaN	NaN	0		4828
2	25309	51.9957	266.8156	2067	57.2361	302.8707	12.622588	NaN	
1	NaN	NaN	3002.9778	-1.04E-06	NaN	NaN	0		3900
2	25621	52.0011	177.0866	3031	93.0404	267.081	12.622707	NaN	
1	NaN	NaN	3002.9384	-1.04E-06	NaN	NaN	0		4268
2	25622	51.9927	176.4004	2342	103.4556	256.6572	12.622652	NaN	
1	NaN	NaN	3002.9514	-1.04E-06	NaN	NaN	0		3988
2	25623	51.9976	177.2737	3741	110.3465	249.7805	12.622708	NaN	
1	NaN	NaN	3002.9713	-1.04E-06	NaN	NaN	0		4150
2	25624	51.9991	176.4373	1249	87.6972	272.4038	12.62267	NaN	
1	NaN	NaN	3002.9598	-8.60E-07	NaN	NaN	0		4212
2	25649	52.0101	312.7223	930	63.1305	296.9654	12.622597	NaN	
1	NaN	NaN	3002.973	-8.60E-07	NaN	NaN	0		4276
2	25650	52.013	312.6517	235	175.663	184.4231	12.622658	NaN	
1	NaN	NaN	3002.907	-8.60E-07	NaN	NaN	0		4040
2	25651	52.0092	311.4035	888	347.0246	13.0595	12.622664	NaN	
1	NaN	NaN	3002.9466	-8.60E-07	NaN	NaN	0		4171
2	25652	52.0051	312.6713	778	29.7297	330.3589	12.622603	NaN	
1	NaN	NaN	3002.9332	7.70E-07	NaN	NaN	0		4799
2	25676	51.9752	311.5598	24463	1.7587	358.3284	12.622732	NaN	
1	NaN	NaN	3002.9844	-7.30E-07	NaN	NaN	0		4256
2	25677	51.9961	356.7991	858	121.7615	238.3333	12.62265	NaN	
1	NaN	NaN	3002.9201	-8.60E-07	NaN	NaN	0		4559
2	25678	52.0059	312.6669	1073	132.0697	228.0241	12.622712	NaN	
1	NaN	NaN	3002.5868	-8.60E-07	NaN	NaN	0		4891
2	25679	52.0031	43.2287	631	82.4003	277.6935	12.622619	NaN	
1	NaN	NaN	3002.958	-8.60E-07	NaN	NaN	0		3729
2	25770	51.9973	357.071	749	185.7331	174.3527	12.622709	NaN	
1	NaN	NaN	3002.4565	-8.60E-07	NaN	NaN	0		5755
2	25771	51.9985	358.3287	1423	183.9149	176.1706	12.62267	NaN	
1	NaN	NaN	3002.9712	-8.60E-07	NaN	NaN	0		4492
2	25772	51.9963	356.4897	1185	141.9312	218.1635	12.622583	NaN	
1	NaN	NaN	3002.4434	9.83E-06	NaN	NaN	0		3730
									I

2	25773	51.9919	357.9584	701	286.7545	73.309	12.622749	NaN	
1	NaN	NaN	3002.6001	-1.04E-06	NaN	NaN	0		3603
2	25851	51.9977	42.3531	1326	50.9629	309.1356	12.622636	NaN	
1	NaN	NaN	3002.5341	-1.04E-06	NaN	NaN	0		3503
2	25852	52.0031	42.7328	1360	164.5606	195.5301	12.622686	NaN	
1	NaN	NaN	3002.5736	-1.04E-06	NaN	NaN	0		3552
2	25853	52.0033	42.8084	772	134.5326	225.5605	12.622597	NaN	
1	NaN	NaN	3002.5473	-1.04E-06	NaN	NaN	0		3472
2	25854	52.0024	42.7574	1661	160.5955	199.4974	12.622693	NaN	
1	NaN	NaN	3002.6644	-1.04E-06	NaN	NaN	0		3632
2	25872	52.0065	87.9849	1963	143.5361	216.5639	12.622703	NaN	
1	NaN	NaN	3002.6777	-1.04E-06	NaN	NaN	0		3865
2	25873	52.0108	88.0356	2392	158.46	201.6367	12.622592	NaN	
1	NaN	NaN	3002.7172	-1.04E-06	NaN	NaN	0		3639
2	25874	52.005	88.09	2464	138.2502	221.8552	12.622691	NaN	
1	NaN	NaN	3002.7041	-1.04E-06	NaN	NaN	0		3611
2	25875	52.0032	87.9845	2265	149.8466	210.2531	12.622652	NaN	
1	NaN	NaN	3002.8609	-1.04E-06	NaN	NaN	0		3526
2	25883	52.0049	132.9573	2945	121.5162	238.5993	12.622663	NaN	
1	NaN	NaN	3002.8739	-1.04E-06	NaN	NaN	0		3538
2	25884	52.017	132.526	2348	135.3672	224.7384	12.622693	NaN	
1	NaN	NaN	3002.8343	-1.04E-06	NaN	NaN	0		3542
2	25885	52.0157	132.858	2045	143.1956	216.9053	12.622705	NaN	
1	NaN	NaN	3002.8476	-1.04E-06	NaN	NaN	0		3729
2	25886	52.0061	132.9999	2409	132.2175	227.8897	12.622694	NaN	
1	NaN	NaN	3002.9004	-8.60E-07	NaN	NaN	0		3500
2	25907	51.994	132.1788	3857	90.768	269.3629	12.622605	NaN	
1	NaN	NaN	3002.9119	-5.40E-07	NaN	NaN	0		3521
2	25908	51.991	176.6571	3136	52.6343	307.4808	12.622604	NaN	
1	NaN	NaN	3002.808	-8.60E-07	NaN	NaN	0		3992
2	25909	51.9955	132.4513	3505	129.9124	230.2051	12.622621	NaN	
1	NaN	NaN	3002.9251	-7.60E-07	NaN	NaN	0		3451
2	25910	51.9972	176.783	3198	95.5617	264.5615	12.622664	NaN	
1	NaN	NaN	3002.803	-8.60E-07	NaN	NaN	0		7636
2	25943	51.9989	267.3866	1000	58.348	301.7501	12.622586	NaN	
1	NaN	NaN	3002.8427	-8.60E-07	NaN	NaN	0		3449
2	25944	52.0098	266.8171	1160	49.9884	310.1087	12.622673	NaN	
1	NaN	NaN	3002.9236	-8.60E-07	NaN	NaN	0		7009
2	25945	51.9937	221.6952	2344	56.9518	303.1575	12.622623	NaN	
1	NaN	NaN	3002.9366	-1.11E-06	NaN	NaN	0		4172
2	25946	52.0009	221.9556	2186	106.7773	253.3333	12.622621	NaN	
1	NaN	NaN	3002.5606	-8.60E-07	NaN	NaN	0		6186
2	25961	51.9964	42.7264	1764	176.9973	183.0904	12.622637	NaN	
1	NaN	NaN	3002.6511	5.92E-05	NaN	NaN	0		3037
2	25962	52.0005	88.0266	2001	154.4795	205.5839	12.622679	NaN	
1	NaN	NaN	3002.9647	-8.60E-07	NaN	NaN	0		6526
2	25963	51.9917	176.7315	5021	82.6799	277.4638	12.622601	NaN	
1	NaN	NaN	3002.6907	-8.60E-07	NaN	NaN	0		3306
2	25964	51.9913	87.5079	2704	152.4639	207.6374	12.622688	NaN	

APÊNDICE III Função Densidade de Probabilidade de Weibull

A função densidade de probabilidade (*fdp*) de Weibull com 3 parâmetros [6] é dada por:

$$f(T) = \frac{\beta}{\eta} \left(\frac{T-\gamma}{\eta}\right)^{\beta-1} e^{-\left(\frac{T-\gamma}{\eta}\right)^{\beta}}$$
(1)

onde $f(T) \ge 0, T \ge \gamma, \beta > 0, \eta > 0, -\infty < \gamma < \infty$

 η é o parâmetro de escala, β é o parâmetro de forma e γ é o parâmetro de localização.

A *fdp* de Weibull com 2 parâmetros é obtida com $\gamma = 0$ e é dada por:

$$f(T) = \frac{\beta}{\eta} \left(\frac{T}{\eta}\right)^{\beta-1} e^{-\left(\frac{T}{\eta}\right)^{\beta}}$$
(2)

APÊNDICE IV

Procedimento para cálculo de erro

A estatística utilizada na comparação de métodos de previsão de atenuação é a descrita na Recomendação UIT-R 311-10, que emprega a razão da atenuação prevista para a medida, e o logaritmo natural das razões é utilizado como variável de teste. Para compensar os efeitos das contribuições de outras causas de atenuação diferentes da chuva e também das imprecisões de medida, que afetam principalmente os baixos valores de atenuação, o logaritmo é multiplicado por um fator de escala para valores de atenuação inferiores a 10 dB.

Procedimento

Para cada percentagem de tempo deve-se calcular a razão da atenuação prevista, A_p (dB), e da atenuação medida, A_m (dB):

$$\mathbf{S}_{i} = \mathbf{A}_{p,i} / \mathbf{A}_{m,i} \tag{1}$$

Calcular a variável de teste:

$$V_{i} = \ln S_{i} \cdot (A_{m,i} / 10)^{0.2} \text{ para } A_{m,i} < 10 \text{ dB}$$
(2)

$$V_i = \ln S_i$$
 para $A_{m,i} \Rightarrow 10 \text{ dB}$

Calcular a média μ_V , desvio padrão σ_V , e valor r.m.s. ρ_V dos valores V_i de cada percentagem de tempo:

$$\rho_{\rm V} = (\mu_{\rm V}^2 + \sigma_{\rm V}^2)^{0.5} \tag{3}$$